
Indiscriminate Poisoning Attacks

Given clean distribution 𝜇, define risk as:
Risk ℎ; 𝜇 = Pr

(",$)~'
[ℎ 𝑥 ≠ 𝑦]

Typical ML methods minimize the following surrogate loss:  
min
(
𝐿 ℎ; 𝜇 ≔ 𝐄(",$)~'[𝑙 ℎ; 𝑥, 𝑦 ]

Poisoning attackers can inject up to 𝜖 fraction of poisoned 
training points, chosen from a predefined constraint set 𝐶
(e.g., all dimensions in [0,1] for normalized images)

Research question: 
Are datasets like MNIST digits inherently robust to 

poisoning or just resilient to state-of-the-art attacks?

We measure vulnerability by error increase at 𝜖 = 3%: 
Adult/MNIST digits seem robust, whereas Enron is not

Main Theoretical Results

Definition 1. Given clean distribution 𝜇) and i.i.d. samples 
𝑆) from 𝜇) .An optimal finite-sample poisoning adversary
generates a poisoned dataset 𝑆*∗ with:

𝑆*∗ = argmax,! Risk @ℎ*; 𝜇) , s. t. , 𝑆* ⊆ 𝐶, 𝑆* ≤ 𝜖 D 𝑆)
where @ℎ* = argmin( ∑ ",$ ∈,"∪,! 𝑙(ℎ; 𝑥, 𝑦)

Definition 2. Given 𝜇). An optimal distributional poisoning
adversary generates a poisoned data distribution 𝜇*∗ with:

𝜇*∗ , 𝛿∗ = argmax('!,/) Risk ℎ*; 𝜇)
s. t. supp 𝜇*∗ ⊆ 𝐶, 0 ≤ 𝛿 ≤ 𝜖

where ℎ* = argmin(𝐿 ℎ; 𝜇) + 𝛿 D 𝐿(ℎ; 𝜇*)

Theorem 1. Let @ℎ*, ℎ*∗ be poisoned models by finite-sample 
and distributional optimal attacks. When hypothesis class 
satisfies uniform convergence property with 𝑚(⋅,⋅), 𝑙 is 𝑏-
strongly convex, and Risk ℎ; 𝜇) is 𝜌-Lipschitz continuous, 
then if |𝑆)| ≥ 𝑚(𝜖′, 𝛿′), with probability at least 1 − 𝛿′:

Risk @ℎ*∗ ; 𝜇) − Risk ℎ*∗ ; 𝜇) ≤ 2𝜌 𝜖0/𝑏

Takeaway: finite-sample optimal poisoning attacks are 
consistent estimators of distributional optimal attacks

Theorem 2. Distributional optimal attacks always achieve its 
optimality with 𝜖 ratio when either condition is satisfied:

1. supp 𝜇) ⊆ 𝐶
2. Hypothesis class is convex, and there is a distribution 
𝜇 such that 𝑠𝑢𝑝𝑝 𝜇 ⊆ 𝐶 and 1
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𝐿 ℎ2; 𝜇 = 0

Takeaway: optimal poisoning attacks have non-decreasing
attack performance with respect to poisoning ratio

1-D Case: Gaussian mixtures, linear SVM, and 𝐶 = [−𝑢, 𝑢]

𝛾# 𝛾$

𝜎 𝜎

−𝑢 𝑢

Theorem 3 (Informal).
Data distributions with larger 
|𝛾3 − 𝛾4| and smaller 𝜎 are 
less vulnerable; settings with 
larger 𝑢 are more vulnerable
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Attacker goal: inject 
a few poisoned points 
into clean training data 
to maximize test error 
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Disparate Dataset Vulnerability

Defining Optimal Poisoning

When Can Linear Learners be Robust to 
Indiscriminate Poisoning Attacks?
Fnu Suya, Xiao Zhang, Yuan Tian , David Evans

AdvML-Frontiers’23, paper link: arxiv.org/abs/2307.01073 

𝑤) 𝐶
𝑤)

Projected Separability (Sep) 
Standard Deviation (SD)

Projected Constraint Size (Size):
argm𝑎𝑥!∈#𝑤$%𝑥 − argmin!∈#𝑤$%𝑥

Theorem 4. For margin-based loss 𝑙5, risk of poisoned 
model induced by optimal attack ℎ*∗ is upper bounded by:

Risk ℎ*∗ ; 𝜇) ≤ 𝐿 ℎ); 𝜇) + 𝜖 ⋅ 𝑙5[𝑆𝑖𝑧𝑒6" 𝐶 ]

Metric
Robust Moderately Vul. Highly Vul.

MNIST-
17

MNIST-
69 Adult Dogfish MNIST 
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Filtered 
Enron Enron

Error 
increase 2.7 2.4 3.2 7.9 6.6 33.1 31.9

Base 
Error 0.3 1.2 21.5 0.8 4.3 0.2 2.9

Sep/SD 6.92 6.25 9.65 5.14 4.44 1.18 1.18

Sep/SD 0.24 0.23 0.33 0.5 0.14 0.01 0.01

Projected separability, variance and constraint size are factors 
correlated to the performance (lower and upper bounds) of 
optimal attacks. Distributions with nice properties are indeed 
inherently robust to any indiscriminate poisoning attacks.

General Distributions: compute class-separation |𝛾3 − 𝛾4|, 
standard deviation 𝜎 and constraint size 2𝑢 by projecting 
onto clean model weight 𝑤) and scaling back by ||𝑤)||4:

Explaining Dataset Vulnerability 
• High Sep/SD: large margin, low 𝐿 ℎ); 𝜇) , less vulnerable
• High Sep/Size: low Size, less vulnerable

Conclusion

pos.neg.


